koefficient-sharpa
Коэффициент Шарпа является одним из самых часто используемых инструментов, который дает возможность максимально точно определять эффективность новых стратегий Форекс. Чтобы грамотно использовать коэффициент Шарпа, необходимо точно знать, как именно проводится расчет этого коэффициента, а также, как его использовать для проведения оценки разнообразных стратегий Форекс.

Для проведения грамотной оценки торговой стратегии следует сравнить полученный  доход от ее использования с уровнем рисков, которым подвергается трейдер, применяя данную стратегию.

Коэффициент Шарпа Форекс позволяет грамотно определять соотношение описанных выше показателей. Чем выше будет это соотношение, тем более эффективной является анализируемая стратегия. Существует специализированная формула для проведения расчета коэффициента Шарпа, ознакомиться с ней вы можете на представленном ниже рисунке.

kojefficient-sharpa-foreks
Несмотря на то, что представленная выше формула выглядит достаточно простой, следует разобраться в ней более подробно. Числителем в этой формуле выступает значение среднего избыточного дохода, который удалось получить при помощи анализируемой стратегии в течение одного месяца ведения торгов.

От общей величины дохода в числителе необходимо вычесть безрисковый доход. В знаменателе формулы учитывается значение риска. Уровень риска обычно зависит от волатильности Форекс пар. Таким образом, чем выше уровень волатильности, тем выше риски при использовании валютной пары.

Воспользовавшись описанной выше формулой, вы сможете достаточно легко рассчитать коэффициент Шарпа. Если в процессе расчета вы получите цифру ниже нуля, то анализируемая стратегия является малоэффективной.

Если полученный коэффициент Шарпа будет равняться единице, то стратегия является пригодной для эффективного ведения торгов на валютном рынке Форекс. Согласно утверждениям создателя формулы, оптимальным значением коэффициента Шарпа является два или выше.

При расчете коэффициента Шарпа для одной торговой стратегии Форекс обычно не учитывается безрисковая доходность, так как в подобных ситуациях она просто отсутствует.

Читать тут — форекс обучение торговле

Коэффициент Шарпа. Особенности применения

При помощи данного коэффициента трейдеры могут сравнить несколько стратегий и выбрать наиболее оптимальную для ведения торгов. Так, например, если сравнить две стратегии с одинаковым уровнем доходности, где одна из них обладает более высоким уровнем риска, более рискованная стратегия будет обладать меньшим значением коэффициента Шарпа.

Таким образом, научившись грамотно рассчитывать коэффициент Шарпа, вы сможете оценивать разнообразные стратегии Форекс и принимать решение использовать их для ведения торгов на Форекс или нет.

Порядок расчета коэффициента Шарпа

Для того, чтобы выполнить расчет коэффициента Шарпа, не нужно обладать никакими специализированными знаниями. Допустим вам необходимо оценить эффективность стратегии при помощи коэффициента Шарпа. Для этого потребуются результаты выполненных операций, которые можно взять в торговой платформе, посетив вкладку «Отчет». Средняя доходность рассчитывается в процентном соотношении от замеров изначального депозита. Рассчитывается этот показатель по довольно простой формуле (прибыль/размер депозита*100).

Лучшие брокеры РФ и мира

Форекс РФЗаграничныеОпционныеФондовые РФ
1Бро №1Бро №1Бро №1Бро №1
2Бро №2Бро №2Бро №2Бро №2
3Бро №3Бро №3Бро №3Бро №3

raschet-kojefficienta-sharpa
Затем необходимо определить уровень риска, который равняется уровню волатильности, используемой для ведения торгов на валютной паре. Для того, чтобы узнать волатильность валютных пар, следует воспользоваться калькулятором волатильности либо специализированным онлайн сервисом.

Затем простым делением полученного значения доходности на уровень риска мы сможем получить коэффициент Шарпа.

Следует отметить, что описанный выше коэффициент можно применять для проведения оценки эффективности ПАММ-счетов, но это связано с определенными трудностями, так как компании, которые управляют портфелями, довольно редко делятся данными об их составе.

Недостатки коэффициента Шарпа

К сожалению, при всей своей простоте и удобстве коэффициент Шарпа имеет определенные минусы:

  • Этот коэффициент в некоторых случаях может не правильно производить расчет прибыли. Из-за того, что уровень прибыль рассчитывается в процентах, из-за ряда убыточных периодов, он может отображаться некорректно.
  • При измерении колебаний волатильности коэффициент присваивает им негативное значение. Существенные колебания, независимо от того, в какую сторону они произошли, будут восприниматься индикатором как негативные. Таким образом, любые существенные колебания волатильности будут серьезно снижать значение коэффициента, что сделает оценку рисков необъективной.
  • Коэффициент не принимает во внимание стандартное отклонение. При расчете этого коэффициента не учитываются серии выигрышных и проигрышных ордеров, что отрицательно сказывается на его эффективности.

Несмотря на наличие перечисленных выше минусов, коэффициент Шарпа позволяет довольно грамотно проводить сравнение эффективности различных стратегий.

Биография Уильяма Шарпа

Уильям Шарп родом из Бостона, он был рожден в студенческой семье. Отец Шарпа проходил обучение на курсе «Английская литература», а его мать на курсе естествоведение.

koefficient-sharpa
После школы Уильям Шарп решил получить медицинское образование, но спустя год обучения он охладел к медицине и уехал в Лос-Анжелес, где стал изучать бухгалтерию и экономику. В процессе обучения он увлекся микроэкономикой, которая оказала огромное влияние на его мировоззрение.

В конце 1956 года Уильям Шарп получает степень магистра экономики и устраивается работать экономистом в крупную компанию, которая специализировалась на исследованиях в области прикладной экономики. В этот период он вместе со своим коллегой начинает работу над теорией взаимодействия различных портфелей с ценными бумагами.

В начале 1961 года Уильяму Шарпу удалось получить докторскую степень в области экономики. В своей диссертации он делает целый ряд выводов, которые в последствии стали основой для создания коэффициента Шарпа.